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Abstract

We review main results in electrostatic aspects of plasmonics. Although many applications of plasmonics
require full-wave approach, plasmon resonance has an electrostatic nature. In this paper we focused on
fundamentals of plasmonics, which are easier understood in the electrostatic approximation. We also
touch upon a history of first insights in resonances in subwavelength electromagnetic systems.
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1. Introduction
Recently electrodynamics of media with negative values of permittivity and/or permeability has

attracted huge interest in the literature [1–13]. Basic phenomena in this field, such as, e.g., SERS [6,14–20],
SPASER, STM [21], and numerous effects observed in metamaterials [1–13], are related to plasmon resonances.
All these phenomena can be united by a single term—plasmonics.

A characteristic feature of plasmonics, which singles it out from ordinary optics and electrodynamics,
is that main phenomena in plasmonics occur on scales that are much smaller than the wavelength of light in
vacuum. This endows plasmonics with many features of near-field optics and makes it to be in great demand
for modern technologies.

Since the “stage”, on which events in plasmonics take place, is small, plasmonics is akin to physics of
magnetostatic waves [14,15,22] with the only difference that magnetostatic phenomena occur in the microwave
range, while plasmonic events are observed in optics. As well as in the description of magnetostatic waves,
the majority of phenomena of plasmonics can be treated in terms of the quasistatic approach. This is related
to the fact that the spatial derivatives in Maxwell’s equations greatly exceed the time derivatives, which,
therefore, can be neglected.

In this paper, we review plasmonic systems, which may be considered in quasistatic approximation.

2. The frequency of plasmon resonance
The term “plasmon” has appeared in plasma physics to describe longitudinal collective oscillations of

electrons (Langmuir waves1) in plasmas. On average, plasma is quasineutral, this means that the mean local
charge equals zero. Assume that, at a certain moment of time, a fluctuation in the charge distribution arose;
namely, all particles of like charges in a plane layer with cross section 𝐴𝐵𝐶𝐷 (see Fig. 1), e.g., electrons,
are spontaneously displaced in the same direction by distance 𝑥. As a result of this spontaneous charge
separation, a plane capacitor is formed, inside of which homogeneous electric field 𝐸 = 𝑒𝑛𝑥, appeared, where
𝑒 is the electron charge, and 𝑛 is the electron density. This field will act on a single uncompensated electron

∗a-vinogr@yandex.ru
1The term “plasma” itself has been introduced by Irving Langmuir [23]
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with force 𝐹 = 𝑒𝐸 = 𝑒2𝑛𝑥, so that the equation of motion of such an electron has the form

𝑥̈ = − 𝑒

𝑚
𝐸 = −𝑒2𝑛

𝑚
𝑥. (1)

The solution to this equation is a harmonic oscillation with a frequency 𝜔𝑝 =
√︀
𝑒2𝑛/𝑚, which is

referred to as the plasma frequency.

(a)

(b)
(c)

Fig. 1 – Charge separation as a result of plasmon oscillations

If the fluctuation has the shape of a sphere rather than of a layer, the field inside of the fluctuation
region will also be homogeneous. Indeed, uncompensated negative charges in the examined fluctuation
will shift outside from the surface of the initial volume by the distance 𝛿𝑥 = 𝑥 cos𝜙 (𝑅 and 𝜙 are the
spherical coordinates fixed to the center of the fluctuation); as a result, on the surface of the surface charge
𝛿𝜎 = 𝑛𝑒𝑥 cos𝜙 appears. Mathematically, this problem is equivalent to the problem on the field inside a
dielectric sphere with the polarization 𝑃 = 𝑛𝑒𝑥. As is well known [24], the field 𝐸 inside of this sphere is
given by 4𝜋𝑃/3. Substituting this field 𝐸 = 4𝜋𝑒𝑛𝑥/3 into Eq. (1), we arrive at the equation governing motion
of an oscillator with the frequency equal to

𝜔𝑠𝑝 =

√︂
𝑒2𝑛

3𝑚
=𝜔𝑝/

√
3.

For the fluctuation having the shape of an ellipsoid, the field in it as a result of the charge separation
will be 𝑛𝑖𝑃 , where 𝑖 = 𝑥, 𝑦, 𝑧 coincides with one of the principal axes of the ellipsoid, while 𝑛𝑖 is the
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depolarization factor [25]. Correspondingly, the resonant frequency will be given by 𝜔𝑒𝑝𝛼 = 𝜔𝑝
√
𝑛𝛼. Note

that 𝑛𝑥 + 𝑛𝑦 + 𝑛𝑧 = 1 [25]. For a circular cylinder whose axis is directed along the x coordinate, we have

𝑛𝑥 = 0, 𝑛𝑦 = 𝑛𝑧 = 1/2, and 𝜔𝑐𝑝 = 𝜔𝑝/
√
2.

3. Description of the plasmon resonance in terms of the permittivity
In order to describe plasmon oscillations, microscopic description methods have been developed,

which take into account quantum effects, and so on [18, 19]. However, in view of the collective character
of oscillations, the description of plasmons in terms of the permittivity is often employed. In this chapter,
we restrict ourselves precisely to this approach. To estimate the permittivity, we consider plasma in the
free-electron approximation [1, 6, 21]. In other words, we will assume that the field generates the current
J = 𝑛𝑒𝜈, where 𝜈 is the average velocity of electrons. Microscopic Maxwell’s equations are reduced to the
wave equation

∇×∇× E = −𝜀𝜇

𝑐2
𝜕2E

𝜕𝑡2
− 4𝜋𝜇

𝑐2
𝑛𝑒

𝜕

𝜕𝑡
𝜈. (2)

According to Newton’s second law, 𝑚𝜈̇ = −𝑒E. This finally yields the following closed equation for the
electric field:

∇×∇×E = − 1

𝑐2
𝜕2E

𝜕𝑡2
+

4𝜋𝜇

𝑐2
𝑛𝑒2

𝑚
E. (3)

For its solution in the form of plane wave exp (−𝑖𝜔𝑡+ 𝑖kr), we obtain the dispersion equation

𝑘2 =
𝜔2

𝑐2

(︃
1−

𝜔2
𝑝

𝜔2

)︃
, (4)

which yields the following expression for the permittivity of the plasma:

𝜀 (𝜔) = 1−
𝜔2
𝑝

𝜔2
. (5)

The condition 𝜔 = 𝜔𝑝 of excitation of the volume Langmuir oscillations (see Eq. (1)) looks now as
𝜀𝑟𝑒𝑠 = 𝜀 (𝜔) = 0. We note that this condition is unambiguously related to the geometry of the problem
defined by plane wave. In the case of a spherical geometry, plasmon oscillations are excited at the frequency
𝜔 = 𝜔𝑝/3, i.e., at resonant value of permittivity 𝜀𝑟𝑒𝑠 = −2. In the case of an ellipsoid,

𝜀𝑟𝑒𝑠 = −(1/𝑛𝛼 + 1);

in particular, for a cylinder, 𝜀𝑟𝑒𝑠 = −1. Note that, in all these cases, the dipole moment 𝑑 induced by external
field 𝐸 as well as polarizability 𝛼 = 𝑃/ (𝐸𝑉 ) become infinite. Here 𝑉 is the particle volume. In particular,
for a sphere that consists of a material with 𝜀𝑖𝑛𝑡 and is placed into a medium with 𝜀𝑒𝑥𝑡, we have

𝛼 =
3

4𝜋
𝑉

𝜀int − 𝜀𝑒𝑥𝑡
𝜀int + 2𝜀𝑒𝑥𝑡

. (6)

In other words, at resonant values of permittivity a zero field can cause a finite response of a plasmonic
particle. This means that plasmon oscillations are nonzero eigensolutions of the Maxwell equations—plasmons
that exist in the absence of an external field.

It is worth emphasizing that the values of permittivity at which the plasmon resonance is observed
are independent of the particular form of the frequency dispersion. Thus the resonance can be observed
at resonant values of permittivity even in materials with a permittivity dispersion different from (5). The
frequency of the plasmon resonance, more exactly, the negative value of the permittivity at which it is
observed, is determined by the geometry of the problem. Indeed, the equation div (𝜀E) = 0 for plane waves
𝐸 ∼ exp (−𝑖𝜔𝑡+ 𝑖kr), which define the planar geometry, is reduced to the following equation

𝜀 (𝜔)kE = 0. (7)

At 𝜀 (𝜔) ̸= 0 the solution is a transverse travelling wave, while, at 𝜀 = 0, the localized longitudinal
oscillations of the electric field may appear. It is the case of the Langmuir resonance. It is evident that the
curl of this field is zero and, therefore, the magnetic field is also zero. The latter fact means that the vector
potential can be neglected and the electric field can be considered to be the gradient of the scalar potential.
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4. Multipole resonances of a plasmonic particle
As we have seen, if the symmetry of the particle changes, the resonant value of the permittivity also

changes. The same effect may be achieved by changing the symmetry of the field distribution. Even if the
shape of the plasmonic particle is specified, the resonance can be observed at several values of the permittivity,
corresponding to excitation of multipole plasmons, such as quadrupole, octupole, etc.

For simplicity, let us consider a spherical plasmonic particle. As is well known, in a homogeneous
electric field only an electric dipole moment may be induced in the sphere. In order to excite a higher-order
(multipole) moment the sphere should be placed in an inhomogeneous field. The inhomogeneity of the field
can be caused by different reasons. For example, it can be created by a periodic inhomogeneity in the space
of an incident plane wave, or by an inhomogeneity formed by neighboring inclusions in a composite material,
or by some other inhomogeneity of the system, such as, e.g., corners, sharp edges, tips, and so on. In any
case, the field of a plasmon is the solution of the Laplace equation that vanishes at infinity.

The problem on excitation of a small sphere by an inhomogeneous field of the form of 𝜙0 = 𝑟𝑙𝑌𝑙,𝑚 (𝜃, 𝜙)
is reduced to solving the Laplace equation [2]

1

𝑟2
𝜕

𝜕𝑟

(︂
𝑟2

𝜕𝜙

𝜕𝑟

)︂
+

1

𝑟2 sin𝜗

𝜕

𝜕𝜗

(︂
sin𝜗

𝜕𝜙

𝜕𝜗

)︂
+

1

𝑟2sin2𝜗

𝜕2𝜙

𝜕𝜙2
= 0. (8)

In order to find its solution, it is convenient to use the method of separation of variables. By substituting
the solution in the form of 𝜙 = 𝑅 (𝑟)Θ (𝜗) Φ (𝜙) into (8), we arrive at the systems of equations

𝑑
𝑑 𝑟

(︀
𝑟2 𝑑

𝑑 𝑟𝑅
)︀
− 𝑙(𝑙 + 1)𝑅 = 0,

1
sin 𝜃

𝑑
𝑑 𝜃

(︀
sin2𝜃 𝑑Θ

𝑑 𝜃

)︀
− 𝑚2

sin2𝜃
Θ+ 𝑙(𝑙 + 1)Θ = 0,

𝑑2Φ
𝑑𝜙2 +𝑚Φ = 0,

(9)

the solution of the first of them is given by

𝑅 (𝑟) = 𝐴𝑟𝑙 +
𝐵

𝑟𝑙+1
,

while the solutions of the other two equations are Legendre polynomials 𝑃𝑚
𝑙 (cos𝜗) and exponentials

exp (±𝑖𝑚𝜙). At 𝜃 = ±𝜋, the second equation has finite solutions only at 𝑙 ≥ |𝑚| [3]. For the potentials inside
and outside of the sphere, 𝜙𝑖𝑛𝑡 and 𝜙𝑒𝑥𝑡, respectively, the well-known expressions are obtained

𝜙𝑖𝑛𝑡 = 𝑎𝑟𝑙𝑌𝑙,𝑚 (𝜃, 𝜑) , |𝜙𝑖𝑛𝑡 (𝑟 = 0)| < ∞

𝜙𝑒𝑥𝑡 = 𝑟𝑙𝑌𝑙,𝑚 (𝜃, 𝜙) + 𝑏𝑟−(𝑙+1)𝑌𝑙,𝑚 (𝜃, 𝜑) , |𝜙𝑒𝑥𝑡 (𝑟 = ∞)| < ∞,

(10)

where 𝑌𝑙,𝑚 (𝜃, 𝜙) are the spherical functions:

𝑌𝑙,𝑚 (𝜃, 𝜙) = (−1)
(𝑚+|𝑚|)/2

𝑖𝑙
[︂
2𝑙 + 1

4𝜋

(𝑙 − |𝑚|)!
(𝑙 + |𝑚|)!

]︂1/2
𝑃𝑚
𝑙 (cos𝜗) 𝑒𝑖𝑚𝜙.

In a sphere that is placed in an inhomogeneous field of the form of

𝜙0 ∼ 𝑟𝑙𝑌𝑙,𝑚 (𝜃, 𝜑) ,

multipole moment 𝑎 arises, which has a pole at

𝜀
(𝑙)
int = − 𝑙 + 1

𝑙
𝜀𝑒𝑥𝑡 (11)

(problem 2.1). At 𝑙 = 1, a dipole resonance occurs, and the field inside of the sphere is homogeneous
(see [13, 26]). At 𝑙 > 1, the field inside of the sphere is inhomogeneous. With an increase in the order of
multipole 𝑙, the field inside of the sphere concentrates near the surface,

𝜙𝑖𝑛𝑡 = 𝑎𝑟𝑙𝑌𝑙,𝑚 (𝜃, 𝜑) ,

and, in this respect, the solution can be called the surface plasmon. At 𝑙 → ∞, the spacing between
poles 𝜀

(𝑙)
int decreases. Moreover, this leads to the appearance of a point of condensation of poles at 𝜀

(∞)
int =

−𝜀ext [3, 6, 11,12, 14,24–33].
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For a plasmonic sphere with permittivity (11), the excitation frequencies of corresponding resonances
may be easily estimated as

𝜀𝑖𝑛𝑡 = 1−
𝜔2
𝑝

𝜔2
= − 𝑙 + 1

𝑙
𝜀𝑒𝑥𝑡 ⇒ 𝜔2 =

𝜔2
𝑝

[1 + (𝑙 + 1) 𝜀𝑒𝑥𝑡/𝑙]
→

𝑙→∞
𝜔2
𝑠𝑢𝑟𝑓 =

𝜔2
𝑝

1 + 𝜀𝑒𝑥𝑡
. (12)

To solve the problem for dielectric cylinder we should consider cylindrical coordinates. The Laplace equation
takes the form [15]

1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝜙

𝜕𝑟

)︂
+

1

𝑟2
𝜕2𝜙

𝜕𝜙2
+

𝜕2𝜙

𝜕𝑧2
= 0. (13)

Assuming that the field is perpendicular to the cylinder axis we can search for solution independent
of 𝑧. Substituting into the Laplace equation the sought solution in the form of 𝜙 = 𝑅 (𝑟) Φ (𝜙), we arrive at
the systems of equations

𝑑
𝑑 𝑟

(︀
𝑟 𝑑𝑅

𝑑𝑟

)︀
− 𝑚

𝑟 𝑅 = 0,

𝑑2Φ
𝑑𝜙2 +𝑚Φ = 0.

(14)

The first of them has the solution 𝑅 (𝑟) = 𝐴𝑟𝑚 + 𝐵
𝑟𝑚 , while the solution of the second equation is

exp (±𝑚𝜙). This yields the following well-known expressions for the potentials inside and outside of the
sphere, 𝜙𝑖𝑛𝑡 and 𝜙𝑒𝑥𝑡 + 𝜙0, respectively:

𝜙𝑖𝑛𝑡 = 𝑎𝑟𝑚 cos(𝑚𝜙), |𝜙𝑖𝑛𝑡 (𝑟 = 0)| < ∞,

𝜙𝑒𝑥𝑡 = 𝑏𝑟−𝑚 cos(𝑚𝜙), |𝜙𝑒𝑥𝑡 (𝑟 = ∞)| < ∞.

(15)

In a cylinder placed in an external homogeneous field that is described by potential 𝜙𝑒𝑥𝑡 = cos (𝑚𝜙), a
multipole moment appears, which has a pole at

𝜀𝑖𝑛𝑡 = −𝜀𝑒𝑥𝑡, (16)

(problem 2.2).

In other words, all the multipoles of the cylinder have resonance at one and the same value of the
permittivity and one and the same frequency.

5. Plasmon resonance in a system of particles (plasmonic nanolens)
The plasmon resonance can be used to enhance the local field strength [17, 34]. Let us consider a

scheme that has been proposed in [34]. In this work, a finite chain of metal nanospheres was examined. Let
𝑅𝑖 denote the radius of the ith nanosphere and 𝑑𝑖,𝑖+1 denote the spacing between the surfaces of the 𝑖th and
(𝑖+ 1)-th nanospheres. Then, the system is constructed implying that the self-similarity takes place, i.e.,

𝑅𝑖+1 = 𝜅𝑅𝑖, 𝑑𝑖,𝑖+1 = 𝜅𝑑𝑖+1,𝑖+2 𝑖 = 1, 2, ....𝑁,

where 𝜅 is a certain constant that is smaller than unity (see Fig. 2). At 𝜅 << 1, the local field of the
𝑖th nanosphere is only insignificantly perturbed by the field of the (𝑖+ 1)-th nanosphere. Due to the plasmon
resonance, the local field near the largest nanosphere is enhanced compared to exciting field 𝐸0 by a factor of
Q, where 𝑄 ∼ Re𝜀 (𝜔) /Im𝜀 (𝜔) is the quality factor of the resonance, and 𝜀 (𝜔) is the relative permittivity of
the metal of which nanospheres are made of, and 𝜔 is the frequency of the exciting field. The local field of
the first, largest nanosphere can be considered to be homogeneous on the scale of the second nanosphere,
and it can be treated as an external exciting field. Therefore, near the second nanosphere, the field will be
enhanced 𝑄2 times. By continuing this construction, we find that, near the 𝑛-th nanosphere, the local field
will be equal to 𝑄𝑛𝐸0 >> 𝐸0. For example, for a really achievable value 𝑄 ∼ 10 and 𝑛 equal to three2,
we find that the local field near the smallest nanosphere is 𝐸𝑛 = 103𝐸0. If this nanolens is used in Raman
spectroscopy, then, in accordance with the presented estimate, the Raman scattering will be enhanced by a
factor of (𝐸/𝐸0)

4 ∼ 1012 [18].

Really, it is necessary to take into account the mutual influence of nanospheres. This mutual influence
manifests itself in that all the nanospheres are involved in the resultant oscillation, so that its frequency
becomes different from the resonant frequency of an individual sphere. The main consequence is that the
stronger enhancement is obtained for not-too-small , but, when a smaller nanosphere can rather strongly
affect the field of a larger nanosphere. In this case, the greatest enhancement is achieved in between the
smallest spheres.

2The size of the smallest nanosphere is restricted by the electron free path length in the metal; i.e., at optical frequencies,
this radius should be chosen to be not smaller than 5 nm.
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(a) (b)

Fig. 2 – (a) Geometry of a nanolens consisting of three metal spheres with the radii 𝑅1, 𝑅2, and 𝑅3 being equal to
45, 15, and 5 nm, respectively; the spacings 𝑑12 and 𝑑23 between the surfaces of the corresponding spheres are equal
to 4.5 and 1.5 nm, respectively. (b) Enhancement coefficient of a local field in relation to the coordinate in the gap

between the spheres. The figures were taken from [6, 19]

The efficiency of the proposed scheme was verified in the course of the numerical simulation using the
multipole spectral expansion method [21], which is based on the spectral method in the differential form [1].

6. Spatial distribution of the field energy under plasmon resonance conditions
When studying complex systems that consist of several plasmonic particles, it is also necessary to

take into account that, at plasmon resonance, the fraction of energy that is contained outside of a plasmonic
particle, namely, in the dielectric, is always smaller than the fraction of energy that is concentrated inside of
plasmonic particles [2].

Let us consider a limiting losseless case. In accordance with the Kramers–Kronig relations, the
permittivity of a metal has the form [25]: 𝜀𝑀 = 𝜀∞ − 𝜔2

𝑝/𝜔
2, where 𝜀∞ is the constant that does not depend

on the frequency. Depending on the shape of a plasmonic particle or on the space distribution of a set of such
particles, there is a frequency or the negative value of the permittivity of the metal, at which the plasmon
resonance is observed; i.e., there is an eigensolution that differs from zero at a zero external field. A particular
feature of this eigensolution is that the field tends to zero at infinity.

The following relation can be written:∫︀
Ω
𝜀E ·E𝑑𝑉 =

∫︀
Ω
D ·E𝑑𝑉 = −

∫︀
Ω
D · ∇⃗𝜙𝑑𝑉

= −
∫︀
Ω

[︁
∇ · (𝜙D)− 𝜙∇⃗ ·D

]︁
𝑑𝑉 =

∮︀
𝑆Ω

𝜙 (Dn)𝑑𝑠 = 0

. (17)

Then, by dividing the whole volume into a part that is occupied by the dielectric and a part that contains
plasmonic particles and assuming that the permittivity distributions inside of these volumes are homogeneous,
we obtain ∫︁

Ω𝐷

𝜀𝐷E ·E𝑑𝑉 = −
∫︁
Ω𝑀

𝜀𝑀E ·E𝑑𝑉 . (18)

The energy stored in the plasmonic particle has the form

𝑈𝑀 =
1

8𝜋

∫︁
Ω𝑀

𝑑𝜔𝜀𝑀
𝑑𝜔

E ·E𝑑𝑉. (19)

where

𝑑𝜔𝜀𝑀
𝑑𝜔

=
𝑑
[︁
𝜔
(︁
𝜀∞ − 𝜔2

𝑝

𝜔2

)︁]︁
𝑑𝜔

= 2𝜀∞ − 𝜀𝑀 > −𝜀𝑀 , (20)
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that yields

𝑈𝑀 =
2𝜀∞ − 𝜀𝑀

8𝜋

∫︁
Ω𝑀

E ·E𝑑𝑉. (21)

The energy stored inside of the dielectric is given by

𝑈𝐷 =
1

8𝜋

∫︁
Ω𝐷

𝜀𝐷E ·E𝑑𝑉 = −
∫︁
Ω𝑀

𝜀𝑀E ·E𝑑𝑉 . (22)

For the ratio of these energies, we have

𝑈𝑀

𝑈𝐷
=

(2𝜀∞ − 𝜀𝑀 )
∫︀
Ω𝑀

E ·E𝑑𝑉

−𝜀𝑀
∫︀
Ω𝑀

E ·E𝑑𝑉
=

(2𝜀∞ − 𝜀𝑀 )

−𝜀𝑀
> 1. (23)

Assuming that the losses in the plasmonic particle are small and using (18), we can obtain the following
estimate for the quality factor of the plasmon resonance, 𝑄 = 𝜔(𝑈𝑀+𝑈𝐷)

𝑑(𝑈𝑀+𝑈𝐷)/𝑑𝑡 :

𝑄 = 𝜔

𝑑[𝜔Re𝜀𝑀 (𝜔)]
𝑑𝜔

∫︀
Ω𝑀

E ·E𝑑𝑉 + 𝜀𝐷 (𝜔)
∫︀
Ω𝐷

E ·E𝑑𝑉

2Im𝜀𝑀 (𝜔)
∫︀
Ω𝑀

E ·E𝑑𝑉
= 𝜔

𝑑Re𝜀𝑀 (𝜔) /𝑑𝜔

2Im𝜀𝑀 (𝜔)
, (24)

An impression can be formed that, for the restricted system, the quality factor of the resonance does not
depend on the particle shape or on the mutual arrangement of particles. However, the geometrical factor
determines the frequency of the resonance, which, in turn, determines the value of 𝜀𝑀 in expression (24) for
the quality factor.

To conclude we should emphasize that appearing singularities are related to overidealization of the
problem. In the reality, losses are always present in the system, which shifts the frequency of the resonance
to the complex domain. At real-valued frequencies, all quantities prove to be finite. Moreover, at low Joule
losses, it is necessary to take into account losses for the emission of radiation. In this case, the quasistatic
approximation is inapplicable (see [13,26]), and it is necessary to solve the exact problem [11,12].

Fig. 3 – Quality factor of the plasmon resonance of an ellipsoid of revolution in relation to the ratio of its axes 𝑎𝑧/𝑎𝑥

(a unit value of this ratio corresponds to a sphere). The material of the ellipsoid is silver

7. The Ferrell solution for a plasmon on a thin film
We note that the above-described enhancement of the field in the nanolens is a collective plasmon

resonance in which the electromagnetic oscillation is localized not on a single inclusion [35,36] but, rather, on
a system of noncontacting particles. The manifestation of this phenomenon is most clearly pronounced upon
consideration of a plasmonic composite—a dielectric matrix filled by inclusions with a negative permittivity. At
certain concentrations, which depend on the magnitude of the negative permittivity, the effective permittivity
of the composite has a pole [34] that is related to the excitation of a collective plasmon, which involves all
particles and which is not restricted in the volume of the composite. It is clear that the external field at the
resonant frequency should lead to the excitation of an infinitely large polarization, i.e., to the appearance of
strong local fields.
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Thus, we logically pass to the consideration of quasistatic problems for boundaryless objects. In essence,
these solutions are transitional between localized and propagating plasmons.

In the late 1950s, works by Ritchie [37] and, later, by Ferrell [38] have been published in which energy
losses of an electron beam in a metal foil were considered. It was shown that a part of losses is associated
with the excitation of collective oscillations of electrons on the boundary surface of the metal film (see the
discussion in [34]).

It turned out that, even in the planar geometry, the equation div (𝜀E) = 0 can have solutions that are
more complicated than the Langmuir plasmon solution (1). Following [38, 39] consider a metallic layer of
thickness 2𝜏 to be situated in the (𝑥, 𝑦) plane. Then, it follows from the symmetry of the problem that two
solutions should exist at a given value of 𝜏 , one of which is symmetric with respect to the plane 𝑧 = 0, while
the other solution is antisymmetric. Correspondingly, we will seek a solution of the equation 𝑑𝑖𝑣 (𝜀 grad𝜙) = 0
inside of the layer in the form

𝜙𝑘 = cos (𝑘𝑥) (𝑒𝑘𝑧 ± 𝑒−𝑘𝑧).

Using the condition that potential 𝜙𝑘 turns to zero at |𝑧| → ∞ and the continuity condition of the potential
on the plate surface, we obtain the following expressions for the value of the potential outside of the plate:

𝜙𝑧>𝜏
𝑘 = cos (𝑘𝑥) 𝑒−𝑘𝑧(𝑒𝑘𝜏 ± 𝑒−𝑘𝜏 )𝑒𝑘𝜏 at 𝑧 > 𝜏,

𝜙𝑧<−𝜏
𝑘 = cos (𝑘𝑥) 𝑒𝑘𝑧(𝑒−𝑘𝜏 ± 𝑒𝑘𝜏 )𝑒𝑘𝜏 at 𝑧 < −𝜏.

In order to obtain the solution in the whole space, it is necessary to join the normal components of
the electric induction, 𝜀𝜕𝜙/𝜕𝑧, at the boundaries. As a result, we obtain the eigenvalue and eigenfunction
problem, which lies in finding a value of the permittivity at which a symmetric plasmon,

𝜀 (𝜔) = − (𝑒𝑘𝜏 + 𝑒−𝑘𝜏 )

(𝑒𝑘𝜏 − 𝑒−𝑘𝜏 )
, (25)

and an antisymmetric plasmon,

𝜀 (𝜔) = − (𝑒𝑘𝜏 − 𝑒−𝑘𝜏 )

(𝑒𝑘𝜏 + 𝑒−𝑘𝜏 )
, (26)

(see [12]) propagate (see problem 2.3). For the permittivity of the plasma 𝜀 = 1− 𝜔2
𝑝/𝜔

2, the corresponding
frequencies are given by

𝜔 = 𝜔𝑝

√︂
1∓ 𝑒−𝑘𝜏/2

2
. (27)

8. Field enhancement in an apertureless SNOM
The use of near fields in optical instruments makes it possible to overcome the Rayleigh resolution

limit [40,41]. In particular, near fields that arise upon propagation of waves through small (subwavelength)
holes are used in aperture schemes of scanning near-field optical microscopy (SNOM) [25,42]. In the majority
of the schemes of this type, the light enters the system via a tapered optical fiber with a metal-sprayed
coating. The resolution of the instrument is determined by the cross-section of the tapered end of the fiber.
The subwavelength resolution can be achieved if the fiber end is an evanescent waveguide. In this case, the
intensity of near fields in the SNOM aperture configuration is very low, which lowers the sensitivity of the
method.

This drawback is eliminated in apertureless methods of SNOM, in which the incident electromagnetic
wave excites a plasmon on the metal tip. The nanofocusing of plasmons on the tip end [?,40] makes it possible
to create fields of high intensities in a small (subwavelength) region of space [43]. At a specially chosen
geometry, the tip ensures the enhancement of the field intensity by a factor of up to 104 [44]. As a result of
the scattering of the electric field of the plasmon by a sample under study, a far field arises the intensity
of which (in some schemes, its phase as well) is registered and is used to retrieve the image of the sample.
SNOM systems will make it possible to obtain images with a spatial resolution of about 20 nm [45].

The field on the tip end can be found analytically if the shape of the tip is approximated by a certain
simple surface, e.g., by a paraboloid of revolution (a similar solution for a parabolic cylinder was presented
in [46]). In this case, it is convenient to pass to the parabolic coordinate system [47]:

𝑥 = 𝜎𝜏 cos𝜙,

𝑦 = 𝜎𝜏 sin𝜙,

𝑧 =
(︀
𝜏2 − 𝜎2

)︀
/2.

(28)
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The surfaces of constant values of coordinates and are paraboloids of revolution, which are defined,
respectively, as

𝑧 =
(︀
𝑥2 + 𝑦2

)︀
/2𝜎2 − 𝜎2/2 (29)

and
𝑧 = −

(︀
𝑥2 + 𝑦2

)︀
/2𝜏2 + 𝜏2/2 (30)

(see Fig. 4a).

The surface of the metal tip is one of paraboloids with a constant value of 𝜎. It follows from (29) that
the value of 𝜎 is connected with the radius of curvature of the tip end 𝜌0 by a simple relationship 𝜎 =

√
𝜌0.

(a) (b)

Fig. 4 – (a) Distribution of squared field modulus |∇Φ|2 in a plasmon wave on the tip end; (b) dispersion curve of a
plasmon on a gold tip with a radius of the tip end of 𝜌 = 20 nm

If the radius of curvature of the paraboloid is assumed to be much smaller than the wavelength,
𝑘0𝜌0 << 1, the problem can be solved in the electrostatic approximation; i.e., the electric potential can be
found from the Laplace equation ∆Φ = 0 taking into account that Φ and 𝜀𝜕Φ/𝜕𝑛 are continuous on the tip
surface and that Φ turns to zero at infinity.

In parabolic coordinates, the Laplace equation for axially symmetric solutions, which do not depend
on azimuthal angle 𝜙 of the sought solution, takes the form

1

𝜎

𝜕

𝜕𝜎

(︂
𝜎
𝜕Φ

𝜕𝜎

)︂
+

1

𝜏

𝜕

𝜕𝑡

(︂
𝜏
𝜕Φ

𝜕𝜏

)︂
= 0. (31)

Then, we will separate variables Φ (𝜎, 𝜏) = 𝑆 (𝜎)𝑇 (𝜏) and denote the separation constant by 𝜅 ( 1
𝑆

1
𝜎

𝜕
𝜕𝜎

(︀
𝜎 𝜕𝑆

𝜕𝜎

)︀
=

1
𝑇

1
𝜏

𝜕
𝜕𝜏

(︀
𝜏 𝜕𝑇

𝜕𝜏

)︀
= −𝜅). As will be shown below, the choice 𝜅 > 0 ensures an exponential decrease of the solution

along the line 𝜏 = const, i.e., with increasing distance from the tip.

Function 𝑇 (𝜏) is the solution of the zero-order Bessel equation. The solution that is bounded on the
tip end has the form 𝑇 = 𝐽0 (

√
𝜅𝜏). Function 𝑆 (𝜎) is the solution of the modified zero-order Bessel equation.

Inside of the tip, the solution that is bounded at zero has the form 𝑆
(︀
𝜎 <

√
𝜌0
)︀
= 𝐼0 (

√
𝜅𝜎), whereas,

outside of the tip, one should choose the solution that decreases at infinity, 𝑆
(︀
𝜎 >

√
𝜌0
)︀
= 𝛼𝐾0 (

√
𝜅𝜎). The

unknown coefficient is determined from joining the conditions 𝑆
(︀√

𝜌− 0
)︀
= 𝑆

(︀√
𝜌+ 0

)︀
and 𝜀𝑆′ (︀√𝜌− 0

)︀
=

𝑆′ (︀√𝜌+ 0
)︀
, which lead to the dispersion equation for 𝜅 (𝜔):

𝜀 (𝜔)
𝐼0

′ (︀√𝜅𝜌
)︀

𝐼0
(︀√

𝜅𝜌
)︀ =

𝐾0
′ (︀√𝜅𝜌

)︀
𝐾0

(︀√
𝜅𝜌
)︀ . (32)

The corresponding dispersion curve is shown in Fig. 4b, while the field distribution is presented in Fig. 4a.

We note that, on the surface of the metal,

𝜎 =
√
𝜌0,
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the solution has an oscillating character, as in the Ferrell problem. With increasing distance from the tip in
the direction along the tip axis,

𝜏 =
√︀
2𝑧 + 𝜌 ∝

√
2𝑧,

the potential takes the form

Φ = 𝐼0 (
√
𝜅𝜌) 𝐽0

(︁√︀
2𝜅 (𝜌+ 𝑧)

)︁
∝ 𝑠𝑖𝑛

(︁√
2𝜅𝑧

)︁
/(2𝜅𝑧)

1/4
.

Therefore, the behavior of the field has an oscillating character. However, unlike the exponentially decreasing
Ferrell solution, this solution decreases at infinity according to a power law, which is related to the change in
the radius of curvature of the tip along the 𝑧 axis. The concentrating (focusing) of the field on the tip end is
called the nanofocusing effect.

The oscillating character of the solution can be described by introducing the local wavenumber
𝑘 = 𝜕

√
2𝜅𝑧/𝜕𝑧 =

√︀
𝜅/2𝑧. The electrostatic solution presented above is valid only in the range in which the

wavenumber 𝑘 >> 𝜔/𝑐. Therefore, the electrostatic approach is applicable in the neighborhood of the tip:
𝑘0𝑧 << 𝜅/2𝑘0.

In the literature, other shapes of the tip are also considered, which refer to various schemes of scanning
tunneling microscopy (STM). Thus, in [48], the dispersion of plasmons excited between the tip in the shape of
a hyperboloid and a metal plane was determined. As in the case considered above, plasmons have a continuous
spectrum and the field concentration due to the tip effect.

STM schemes that operate with localized plasmons were also realized. Thus, in [38], the sample was
“probed” by the field of a plasmon localized on a nanoparticle that is placed on the tip of an optical fiber.
The plasmon is excited by a far field. The sensitivity and the resolution of this scheme are on the same order
as those discussed above.

5. Conclusions
Thus, plasmonics has passed a long way from first notes of longitudinal plasma resonances to

contemporary applications in microscopy and sensing. The main feature of plasmonics, resonance in
subwavelength structures, is manifested in enhancement of Raman scattering (SERS), perspective plasmonic
lines and interconnects. We hope that simplified electrostatic approach adopted here allowed deep understanding
of plasmonics.
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Аннотация

Проведен обзор основных результатов по электростатическим аспектам плазмоники.
Хотя многие применения плазмоники требуют электродинамического подхода, плазмон-
ный резонанс имеет электростатическую природу. В этой статье мы сосредоточились
на основах плазмоники, которые легче понять в электростатическом приближении. Мы
также затрагиваем историю первых представлений в области резонансов в субволновых
электромагнитных системах.

Ключевые слова: плазмоника, локализованные плазмоны, плазмонный резонанс,
электростатическое приближение
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